Q.P. Code: 20HS0845								NZU								
	R	eg. No:						80]			
		SIDDH	IART B.Te	H INS ech II MAT	STITU Year HEM	JTE O I Sen ATIC	OF EN (AU neste CAL A	GINE TON(r Reg ND S	CERIN OMOU Jular TATI	NG & JS) Exan STIC	TECI ninatio	HNOL ons M IETH(.0GY::] lay-202: 0DS	PUTT 2	UR	
	Tir	ne. 3 hours				((commo	on to C	SM)			Max	Mark	e. 60
	III	ne. 5 nouis			()	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11 12:	T L	- E - 1	2 - 0		.1		IVIAN.		5. 00
					(An	swer a	III FIVE	UNI	T-I	2 - 0	ou iviai	(KS)				
1	a	Using the f	ormul	a for a	$\pi(n)$ fi	nd the	numb	er of j	primes	s ≤100).				L2	6M
	b	For every p	ositiv	e integ	ger n, j	prove	that 7	$^{n} - 3^{n}$ i	is divi	sible l	oy 4.				L3	6M
	C.		0	1 53				O	R							
2	St	ate and prov	ve fund	lamen	tal the	orem	of arit	hmetic							L5	12M
3	a	Find $\phi(2)$)0) a	(200)	and τ	(200)			1-11						L3	6M
	b	Compute the	ne leas	(200)		2^{340} (m	od 3/1	D							L2	6M
		compute ti	ie ieus	n resie		2 (m	00341	.). Ol	R						in some of	
4	Sc	olve the systematic	em of	congr	uence	$x \equiv 3$	(mod)	10), x	≡8(n	nod15	$), x \equiv x$	5 (moo	184)		L6	12M
							`	UNIT	-III							
5	a	Show that	the	sampl	e var	iance	is a	consi	stent	estim	ator o	of the	popula	tion	L3	6M
		variance σ^2	2.							C	1 /	·				
	b	(ii) Unbiase	follov ed esti	mator	stimat (iii) C	ors an Consist	d give cent es	e an ex timato	xampl or R	e for	each (1) Po11	it estima	tion	L3	6M
6	a	Let x_1, x_2	$, x_{n}$	denote	rando	om sai	mple o	of size	e n fro	om a	unifor	m pop	ulation v	vith	L4	6M
		probability Maximum	y dens 1 likely	ity fur v estin	nction nation	$f(x, \theta)$ for θ	$(\theta) = 1;$	$\theta - 1/$	$2 \le x$	$\leq \theta + $	1/2, -	$\infty < \theta$	<∞.Ob	tain		
	b	Find the n	naxim	um li	keliho	od es	timatio	on of	θ in	f(x)	$(,\theta) = 0$	$(1+\theta)$	$x^{\theta}, 0 < x$	<1	L5	6M
		based on a sufficient fe	an incor θ .	lepend	lent s	ample	of si	ze n.	Exan	nine v	whethe	er this	estimate	e is		
								UNIT	Γ-IV							
7	a	The transiti	ion pr	obabil	ity ma	trix o	f a Ma	ırkov	chain	$\{x_n\},\$	n=1, 2	2, 3,	having th	nree	L5	6M
						0.1	0.5	0.4								
		states, 1,2	2 an	d 3is	5 <i>P</i> :	$= \begin{bmatrix} 0.6\\0.3 \end{bmatrix}$	0.2 0.4	0.2 0.3	and	the	initial	l dis	tribution	is		
		$P^{(0)} = (0.1,$	0.2,	0.1).	Finc	d (i	i) $P(X$	$x_2 = 3,$	$X_1 =$	3, X	(-2)	(ii	$P(X_2 =$	= 3)		
		$(iii) P(X_2$	= 2, 2	$K_2 = 3$	$X_1 =$	$3, X_0$	=2)									
	b	Suppose a stages. At a stage as tra stage is rec	com each s ansmit	municate thated, is a 0	ation e prob 0.75. in the	systen bability What 5 th sta	n tran that t is the age?	smits the sau proba	the dig me dig ability	ligits git wil that	0 and 1 be re a 0 is	l 1 th eceived entere	rough m l by the i d at the	any next first	L3	6M

DOO

12M

OR

There are two boxes, box I contains 2 white balls and box II contains 3 red balls. At L4 8 each step of the process, a ball is selected from each box and the 2 balls are Interchanged. Thus, box I always contains 2 balls and box II always contains 3 balls. The states of the system represent the number of red balls in box I after the interchange. Find (i) the transition matrix of the system (ii) the probability that there are 2 red balls in the box I after 3 steps and (iii) the probability that, in the long run there are 2 red balls in box I.

UNIT-V

Satyam info way has two persons for its browsing Centre. If the service time for each L5 9 client is exponential with mean 4 minutes, and if people arrive in a Poisson fashion at the rate of 10 an hour. Then calculate the

(i) Probability of having to wait for service

(ii) Expected percentage of idle time for each girl

(iii) If a client has to wait, what is the expected length of his waiting time?

OR

- A Self-service canteen employee's one cashier at its counter 8 customers arrives per L5 10 every 10 minutes on an average. The cashier can serve on average one per minute. Assuming that the arrivals are Poisson and the service time distribution is exponential, determine
 - The average number of customers in the system. (i)
 - The average queue length (ii)
 - Average time a customer spends in the system. (iii)
 - Average waiting time of each customer. (iv)

*** END ***

12M

12M